ラフ集合からThomas Mannの「魔の山」を考える2


2 「計算文学入門」の概要

 本書は、タイトルにもあるように計算文学の入門編という位置づけである。計算文学は、人文科学と情報科学によるシナジー効果を探るための研究分野の一つと言える。しかし、闇雲に勉強したところで、マージなどできるはずがない。まず、スタートラインに立つために、ポイントとなる組み合わせを探る必要がある。周知のように、人間とコンピュータの間にロジックを立てることは標準となっており、「Thomas Mannはファジーネス」といった組み合わせを見つけることができれば、仮に既に亡くなってしまった作家の分析をコンピュータ上で行う場合でも、結合や比較といった単体的な処理ではなく、マージのための方向性を規定することができる。無論、言語系のロジックは、システム系と仕組みが異なるため緩衝材が必要となる。
Thomas MannのイロニーとZadehのファジー理論は、それぞれ次のように定義されている。

Baumgart(1964:22)によるThomas Mannの「イロニー」の定義。
”Als die Bedingung seines Prosas hält Thomas Mann immer die Distanz zur Wirklichkeit, einmal um sie so genau wie möglich zu betrachten, einmal sie zu kritisieren, das heißt ironisch. …Die kritische Distanz könnte zu einer ironischen Distanz werden. Tatsächlich ist der kritischen Prägnanz eine Art Grenze gesetzt, die aus der Beschaffenheit des sprachlichen Medium selbst dem Bedürfnis nach einer restlos präzisierten Begriffssprache entgegenwirkt.”
「Thomas Mannは、散文の条件として常に現実から距離をとる。一つには、現実をできるだけ正確に考察するために、また一つには、それを批判するために、つまり、イロニー的に。・・・この批判的な距離は、イロニー的な距離となるであろう。実際、批判的な表現上の簡潔さには、余すところなく正確に規定された概念言語の要求に対して、言語媒体そのものの特徴から反対の行動をとるある種の制限が設けられている。」

Yager et al(1987: 23)によるZadehの「ファジー理論」の定義。
”There is an incompatibility between precision and complexity. As the complexity of a system increases, our ability to make precise and yet non-trivial assertions about its behavior diminishes. For example, it is very difficult to prove a theorem about the behavior of an economic system that is of relevance to real-world economics.”
「正確さと複雑さは、両立が困難である。システムの複雑さが増すと、その振舞いについて正確ではっきりとした主張はできなくなってくる。例えば、現実の経済と関連したシステムの振舞いを推測することは、大変に難しい。」

 双方の定義間にあるギャップを埋めるために、言語系とシステム系の論理をつなぐ緩衝材として論理文法を使用する。(詳細については、「計算文学入門」の第2章「論理文法の基礎」を参照すること。) 論理文法は、小史を兼ねてHPSG(Head Driven Phrase Structure Grammar)、Montague Grammar、DRT(Discourse Representation Theory)、直感主義の論理などを経てファジー理論へと進んで行く。その際、Richard Montague による言語分析(PTQ)とThomas Mannの「魔の山」をマージすることにより、何か異質のもの(ここではファジー推論)を引き出せるかどうかがポイントとなる。つまり、Thomas Mannのイロニーを形式論によって記述する場合、ファジー推論を選択することが現状ではベストであるという結論を探っていく。
 「魔の山」からの分析は、上述したイロニー的な距離が問題となる。特に、主人公のHans CastorpとChaucha夫人との距離、さらに、ダボスの療養所に勤務する医者のDr. Krokowski(Behrens院長の助手)を仲介としたHans Castorpと甥のJoachim Ziemßen との距離が問題となっている。距離を測定するために、ファジー化、ファジー推論および脱ファジー化という技法が使われる。また、推論の基礎をなす記憶についても言及がある。(詳細については、「計算文学入門」の第3章「やさしい曖昧な数学」を参照すること。)

花村嘉英 (2017)「ラフ集合でThomas Mannの「魔の山」を考える-テキストマイニングのトレーニング」より


コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です