トーマス・マスとファジィ17


 先にも述べたように、イロニー的な距離とは、物事を正確に把握すると同時に批判的にも捉えることができる間隔のことである。Hans Castorp と Chauchat 婦人の距離(3.4 m) に関するメンバーシップ値を割り当てると、近いは0%、中ぐらいは60%、遠いは 40% になる。ここで、注意するべきことは、この値が単なる物理的な距離ではなく心理的な距離も表している点である。次に、ファジィ化で算出したメンバーシップ値に推論規則を適用する。推論規則は、日常の経験に基づいている。例えば、距離が近ければ離れ、中ぐらいならばそのままで、遠ければ近くなる。
 また、結合演算子も問題になる。問題を短時間で解決するために、和結合には最小値の演算子が、共通結合には最大値の演算子が適用される。そして、最後に、出力の部分集合のメンバーシップ値が計算される。これは、結論を導くためのメンバーシップ値に対する前提から引き継ぐことになる。個々のファジィ集合には、最低一つの推論規則が必要である。出力値のメンバーシップ値は、高い方できられる。これは、最大/最小の方法と呼ばれており、出力となるメンバーシップ関数の各ファジィ 集合に対して、その結果となるメンバーシップ値を移行する方法である。 この方法によるメンバーシップ値の推移は、恣意的な選択である。調節の必要があるイロニー的な距離の値は、脱ファジィ化において算出される。
 脱ファジィ化は、ファジィ的な事柄を具体的な数や値に変換する。 一般的に、重心に基づいた脱ファジィ化が経験に見合った結果をもたらしてくれる。ここでは、「遠近の混合器」においてどのくらいの距離が調節されなければならないのかを確定する。脱ファジイ化の方法として、 最大値の中間を取るものが採用される。これは、出力集合の最大値の中 間にあたる横座標の値を出力値として使用する方法である。物理的で心 理的な距離を測定する場合、置かれた状況によって数字の持つ意味が異 なることは、主観的な印象や個人の経験に基づいて理解できる。求められたイロニー的な距離は、4mになる。但し、部分的な平面のオーバーラップは、顧慮されていない。

花村嘉英(2005)「計算文学入門-Thomas Mannのイロニーはファジィ推論といえるのか?」より


“トーマス・マスとファジィ17” への1件のコメント

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です