a) ファジィ化
曖昧でない値をファジィ集合へ割り当てることが問題になる。その値のファジィ集合に対するメンバーシップ値は、メンバーシップ関数が決定する。実際、メンバーシップ関数は、一つ一つ線的な流れによって証明される。例えは、Hans Castorpのある症状(めまい)との触れ合いを期待する度合を7とする。(ここでは簡単のために、期待を指数で表すことにします。)メンバーシップ関数が与えられると、結果として彼のイロニーは、ファジィ集合 「中ぐらい」の中で0.2、ファジィ集合「高い」の中で0.8になる。
b) 推論
推論は、変数の結合規則により実行され、加工規則または生産規則としても表記される。例として、Hans Castorpの幼年時代を考えてみよう。両親が亡くなってから、祖父がなくなるまでの1年半、Hans Castorpは、祖父の下で生活した。Hans Castorpが祖父を見ている場面がある。「特別で半分夢を見ているようなそし て半分不安な感情、それが交互にやってきてしばらく留まり再び元に戻っていく。一種のめまいである。幼いHans Castorpは、以前から知っている こうした感情に触れることを期待し、そしてまた希望しました」。Hans Castorp の期待が高まり、突然その願望が姿を現すと、彼のイロニーは強くなる。
ここで、和結合には最小値の演算子が、また共通結合には最大値の演算子が割り当てられる。そして、これまで記述したすべての規則を利用することにより、出力変数のメンバーシップ関数の都度の値が算出される。最大/最小の方法は、出力変数のメンバーシップ関数の面が、その都度算出されたメンバーシップ値によって部分的に灰色で区切られている。最大/積の方法は、出力変数のメンバーシップ関数の面が、 その都度算出されたメンバーシップ値によって算出される。
c) 脱ファジィ化
脱ファジイ化は、様々なファジイ集合に割り当てられる出力変数の正確な値を算出する。つまり、曖昧な事柄を具体的な数字や値に変換していく。最大/最小または最大/積の方法によって数字が統合され、重心が算出される。
花村嘉英(2005)「計算文学入門-Thomas Mannのイロニーはファジィ推論といえるのか?」より